657 research outputs found

    Vicarious Reinforcement in Rhesus Macaques (Macaca Mulatta)

    Get PDF
    What happens to others profoundly influences our own behavior. Such other-regarding outcomes can drive observational learning, as well as motivate cooperation, charity, empathy, and even spite. Vicarious reinforcement may serve as one of the critical mechanisms mediating the influence of other-regarding outcomes on behavior and decision-making in groups. Here we show that rhesus macaques spontaneously derive vicarious reinforcement from observing rewards given to another monkey, and that this reinforcement can motivate them to subsequently deliver or withhold rewards from the other animal. We exploited Pavlovian and instrumental conditioning to associate rewards to self (M1) and/or rewards to another monkey (M2) with visual cues. M1s made more errors in the instrumental trials when cues predicted reward to M2 compared to when cues predicted reward to M1, but made even more errors when cues predicted reward to no one. In subsequent preference tests between pairs of conditioned cues, M1s preferred cues paired with reward to M2 over cues paired with reward to no one. By contrast, M1s preferred cues paired with reward to self over cues paired with reward to both monkeys simultaneously. Rates of attention to M2 strongly predicted the strength and valence of vicarious reinforcement. These patterns of behavior, which were absent in non-social control trials, are consistent with vicarious reinforcement based upon sensitivity to observed, or counterfactual, outcomes with respect to another individual. Vicarious reward may play a critical role in shaping cooperation and competition, as well as motivating observational learning and group coordination in rhesus macaques, much as it does in humans. We propose that vicarious reinforcement signals mediate these behaviors via homologous neural circuits involved in reinforcement learning and decision-making

    Same-Sex Gaze Attraction Influences Mate-Choice Copying in Humans

    Get PDF
    Mate-choice copying occurs when animals rely on the mating choices of others to inform their own mating decisions. The proximate mechanisms underlying mate-choice copying remain unknown. To address this question, we tracked the gaze of men and women as they viewed a series of photographs in which a potential mate was pictured beside an opposite-sex partner; the participants then indicated their willingness to engage in a long-term relationship with each potential mate. We found that both men and women expressed more interest in engaging in a relationship with a potential mate if that mate was paired with an attractive partner. Men and women's attention to partners varied with partner attractiveness and this gaze attraction influenced their subsequent mate choices. These results highlight the prevalence of non-independent mate choice in humans and implicate social attention and reward circuitry in these decisions

    Can a dog be jealous?

    Get PDF
    Whether humans alone experience complex emotions like jealousy or envy remains hotly debated, partly because of the difficulty of measuring them without a verbal report. Cook, Berns and colleagues use functional brain imaging to identify in dogs neural responses very similar to those evoked by jealousy in humans. When dogs see their caregiver reward a facsimile dog, their amygdala is activated and the strength of this response predicts aggressive behavior — just as jealousy leads to aggression in humans. The authors conclude that dogs feel something very similar to human jealousy. This novel and creative study tackles one of the most vexing challenges in neuroscience — understanding the unstated thoughts and feelings of others — with practical applications that go beyond getting closer to man’s best friend. The issue of whether a dog can be jealous nevertheless remains far from settled, as we discuss below

    Optical properties of Southern Hemisphere aerosols: Report of the joint CSIRO/NASA study

    Get PDF
    This study was made in support of the LAWS and GLOBE programs, which aim to design a suitable Doppler lidar system for measuring global winds from a satellite. Observations were taken from 5 deg S to 45 deg S along and off the E and SE Australian coast, thus obtaining representative samples over a large latitude range. Observations were made between 0 and 6 km altitude of aerosol physical and chemical properties in situ from the CSIRO F-27 aircraft; of lidar backscatter coefficients at 10.6 micron wavelength from the F-27 aircraft; of lidar backscatter profiles at 0.694 microns at Sale, SE Australia; and of lidar backscatter profiles at 0.532 microns at Cowley Beach, NE Australia. Both calculations and observations in the free troposphere gave a backscatter coefficient of 1-2 x 10 to the -11/m/sr at 10.6 microns, although the accuracies of the instruments were marginal at this level. Equivalent figures were 2-8 x 10 to the -9/m/sr (aerosol) and 9 x 10 to the -9 to 2 x 10 to the -8/m/sr (lidar) at 0.694 microns wavelength at Sale; and 3.7 x 10 to the -9/m/sr (aerosol) and 10 to the -8 to 10 to the -7/m/sr (lidar) at 0.532 microns wavelength at Cowley Beach. The measured backscatter coefficients at 0.694 and 0.532 microns were consistently higher than the values calculated from aerosol size distributions by factors of typically 2 to 10

    Decision Making: The Neuroethological Turn

    Get PDF
    Neuroeconomics applies models from economics and psychology to inform neurobiological studies of choice. This approach has revealed neural signatures of concepts like value, risk, and ambiguity, which are known to influence decision making. Such observations have led theorists to hypothesize a single, unified decision process that mediates choice behavior via a common neural currency for outcomes like food, money, or social praise. In parallel, recent neuroethological studies of decision making have focused on natural behaviors like foraging, mate choice, and social interactions. These decisions strongly impact evolutionary fitness and thus are likely to have played a key role in shaping the neural circuits that mediate decision making. This approach has revealed a suite of computational motifs that appear to be shared across a wide variety of organisms. We argue that the existence of deep homologies in the neural circuits mediating choice may have profound implications for understanding human decision making in health and disease

    Cognitive Control Signals in Posterior Cingulate Cortex

    Get PDF
    Efficiently shifting between tasks is a central function of cognitive control. The role of the default network – a constellation of areas with high baseline activity that declines during task performance – in cognitive control remains poorly understood. We hypothesized that task switching demands cognitive control to shift the balance of processing toward the external world, and therefore predicted that switching between the two tasks would require suppression of activity of neurons within the posterior cingulate cortex (CGp). To test this idea, we recorded the activity of single neurons in CGp, a central node in the default network, in monkeys performing two interleaved tasks. As predicted, we found that basal levels of neuronal activity were reduced following a switch from one task to another and gradually returned to pre-switch baseline on subsequent trials. We failed to observe these effects in lateral intraparietal cortex, part of the dorsal fronto-parietal cortical attention network directly connected to CGp. These findings indicate that suppression of neuronal activity in CGp facilitates cognitive control, and suggest that activity in the default network reflects processes that directly compete with control processes elsewhere in the brain

    Ambiguity Aversion in Rhesus Macaques

    Get PDF
    People generally prefer risky options, which have fully specified outcome probabilities, to ambiguous options, which have unspecified probabilities. This preference, formalized in economics, is strong enough that people will reliably prefer a risky option to an ambiguous option with a greater expected value. Explanations for ambiguity aversion often invoke uniquely human faculties like language, self-justification, or a desire to avoid public embarrassment. Challenging these ideas, here we demonstrate that a preference for unambiguous options is shared with rhesus macaques. We trained four monkeys to choose between pairs of options that both offered explicitly cued probabilities of large and small juice outcomes. We then introduced occasional trials where one of the options was obscured and examined their resulting preferences; we ran humans in a parallel experiment on a nearly identical task. We found that monkeys reliably preferred risky options to ambiguous ones, even when this bias was costly, closely matching the behavior of humans in the analogous task. Notably, ambiguity aversion varied parametrically with the extent of ambiguity. As expected, ambiguity aversion gradually declined as monkeys learned the underlying probability distribution of rewards. These data indicate that ambiguity aversion reflects fundamental cognitive biases shared with other animals rather than uniquely human factors guiding decisions

    Representation of numerosity in posterior parietal cortex

    Get PDF
    Humans and animals appear to share a similar representation of number as an analog magnitude on an internal, subjective scale. Neurological and neurophysiological data suggest that posterior parietal cortex (PPC) is a critical component of the circuits that form the basis of numerical abilities in humans. Patients with parietal lesions are impaired in their ability to access the deep meaning of numbers. Acalculiac patients with inferior parietal damage often have difficulty performing arithmetic (2 + 4?) or number bisection (what is between 3 and 5?) tasks, but are able to recite multiplication tables and read or write numerals. Functional imaging studies of neurologically intact humans performing subtraction, number comparison, and non-verbal magnitude comparison tasks show activity in areas within the intraparietal sulcus (IPS). Taken together, clinical cases and imaging studies support a critical role for parietal cortex in the mental manipulation of numerical quantities. Further, responses of single PPC neurons in non-human primates are sensitive to the numerosity of visual stimuli independent of low-level stimulus qualities. When monkeys are trained to make explicit judgments about the numerical value of such stimuli, PPC neurons encode their cardinal numerical value; without such training PPC neurons appear to encode numerical magnitude in an analog fashion. Here we suggest that the spatial and integrative properties of PPC neurons contribute to their critical role in numerical cognition

    Decision Salience Signals in Posterior Cingulate Cortex

    Get PDF
    Despite its phylogenetic antiquity and clinical importance, the posterior cingulate cortex (CGp) remains an enigmatic nexus of attention, memory, motivation, and decision making. Here we show that CGp neurons track decision salience – the degree to which an option differs from a standard – but not the subjective value of a decision. To do this, we recorded the spiking activity of CGp neurons in monkeys choosing between options varying in reward-related risk, delay to reward, and social outcomes, each of which varied in level of decision salience. Firing rates were higher when monkeys chose the risky option, consistent with their risk-seeking preferences, but were also higher when monkeys chose the delayed and social options, contradicting their preferences. Thus, across decision contexts, neuronal activity was uncorrelated with how much monkeys valued a given option, as inferred from choice. Instead, neuronal activity signaled the deviation of the chosen option from the standard, independently of how it differed. The observed decision salience signals suggest a role for CGp in the flexible allocation of neural resources to motivationally significant information, akin to the role of attention in selective processing of sensory inputs

    Altered Social Reward and Attention in Anorexia Nervosa

    Get PDF
    Dysfunctional social reward and social attention are present in a variety of neuropsychiatric disorders including autism, schizophrenia, and social anxiety. Here we show that similar social reward and attention dysfunction are present in anorexia nervosa (AN), a disorder defined by avoidance of food and extreme weight loss. We measured the implicit reward value of social stimuli for female participants with (n = 11) and without (n = 11) AN using an econometric choice task and also tracked gaze patterns during free viewing of images of female faces and bodies. As predicted, the reward value of viewing bodies varied inversely with observed body weight for women with anorexia but not control women, in contrast with their explicit ratings of attractiveness. Surprisingly, women with AN, unlike control women, did not find female faces rewarding and avoided looking at both the face and eyes – independent of observed body weight. These findings suggest comorbid dysfunction in the neural circuits mediating gustatory and social reward in anorexia nervosa
    corecore